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Abstract 

Covariant jump conditions across a bubble wall, including surface tension and dissipa- 

tion, for a nongravitational moving surface have been derived. Special situations, such as 

those associated with a domain wall, a dust shell, and a spherical boundary, are discussed. 

In particular, the cosmological QCD phase transition has been examined as a specific ap- 

plication of the general formalism. The possible mechanism of energy transport during the 

phase transition is studied, and a critical condition for neutrino conduction to dominate 

over the hydrodynamic flow has been obtained. 
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1. Introduction 

Bubble dynamics has become one of the more active topics at the boundary of par- 

ticle physics and cosmology. For example, just as in condensed-matter systems, many 

physical processes in cosmology may be associated with a possible first order phase tram 

sition, including the inflationary stage of the early universe[‘] and the possibly related 

GUT(grand unified theory) phase transition. 121 Furthermore, some have even speculated 

that the electro-weak phase transition,[3] the QCD phase transition,f4) and even perhaps 

the formation mechanism of galaxie8 in the later stages of the expansion of the universe 

may be related to a first order transition. First order phase transitions are appropriately 

described by bubble dynamics, because any first order phase transition has to be accom- 

panied by an evolution of the new phase bubbles from their formation, to propagation, 

to their coalescence. Thus a thorough investigation of bubble dynamics is required for an 

understanding of the dynamics of the phase transition since, in that transition process, 

the dynamics of the boundary, the nucleation rates of the bubble, and the mechanism of 

energy transport through the boundary will be affected directly by dissipative processes 

and the surface tension, if the bubble is small. 

Several authorsL6] have recently studied bubble dynamics in the context of general 

relativity. However, some problems remain: 1. The Gauss-Codazzi formalism171 is more 

sophisticated than is necessary and thus can be awkward for the treatment of the problem 

without gravity, as in the QCD case of a heavy ion collision. 2. The ability of dissipative 

processes to carry latent heat away from the bubble’s surface is usually completely ignored. 

For the study of the nucleation process of a new phase bubble, this may lead to problems 

because dissipation may become important in the bubble propagation and affect the shape 

of the phase boundary. 3. The effects of the surface tension on the motion of the phase 

boundary are usually not considered. 

In this research, we are attempting to derive a covariant jump condition across. the 

bubble wall, including surface tension and possible dissipation, for a surface moving in 

any manner, but without.gravity. We then obtain a general equation of motion for a 

boundary moving in a background (not vacuum), in the presence of dissipative processes. 

Further, we will take the QCD phase transition as one of the applications and investigate 

the mechanism of energy transport through the boundary during an assumed first order 

QCD phase transition. Finally, we identify a critical condition that determines which 

energy transport mechanismPhydrodynamic flow or neutrino conduction- is dominant in 

the expanding bubbles or shells. We are well aware that recent lattice gauge calculations 

and other consideration@] f aver a 2nd order QCD transition (or even no phase transition 
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at all) and thus make a first order QCD transition unlikely. However, because the possible 

consequences of a potential first order QCD transition are so dramatic, (particularly for 

cosmology), we nevertheless feel the study is worthwhile and may teach us about first order 

transitions in general, even if the QCD transition itself turns out to be at most weakly 

first order. 

2. The Formalism 

Let us assume that a plasma is undergoing a first order phase t,ransition and that the 

two phases of the plasma are separated by a thin wall. The equation of motion of the 

plasma is described by the fluid equation 

V,T’” = 0, (2.1) 

where T’” is the energy-momentum tensor of the system. 

For the system we are considering, the energy-momentum tensor consists of three 

parts: one component, denoted by T(,,,, ‘” describes the perfect fluid; the other two terms, 

AT“” fg] and T’” wall 1 correspond, respectively, to the contributions arising from the dissipa- 

tive processes and the thin wall. A general form of T@” can be written as 

T’” = Tg + AT’” + T;z,*,,, (2.2) 

where 

$0; = (e +p)u’u” +pg”“, (2.3) 

AT”” = _ II H’“H”@. d”ap - [H”“&u” - x(H@“u” + HYau”)Qa, (2.4) 

and 

2 
W/A” = a@% + a,?+ - -g a 3 w * ua, 

HsY G g”” + u%“, Q,, = 3, + Tt?&u,,, 

T’” = d6(x - X)Yy, Wd (2.5) 

S’” E OU’U” + T(h’” + U’U”). (2.6) 

For a domain wall T E -o (u = constant), and for a dust shell, r G 0 (oCz = constant). 

In the above expressions and throughout this discussion, we adopt the convention in 

which the speed of light c = 1 and the space-time metric g@” = (-1, 1, l,l). We use e as the 

energy density, p as the pressure, and ul’ E ~(1, v) as the four-velocity of the fluid, where 
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v is the local fluid velocity, and as usual y = (1 - v’)- *I’. Correspondingly, Up = r(l, V) 

represents the four-velocity of any observer whose world line lies within the thin wall, and 

V is the velocity of the wall, r = (1 - V2)-1/2. Th e coefficients 7, <, x are the shear 

viscosity, the bulk viscosity, and the heat conductivity, respectively, the expressions for 

which are given belowIQ]: 

(2.7) 

( = 4bT4r [;-(g).]‘, 

Here, b is a constant and given by 

b =a (photons) 

=:a (neutrinos). 
(2.10) 

where a is the usual Stefan-Boltzmann constant and T is the mean free time of the radiated 

quanta. wPv is the shear tensor, Qc is the heat flow vector, H 0” is the projection tensor, and 

CJ is the surface energy density of the thin wall. The term h’” 3 gfi” - 71%” = (-1, 1, 1,0) 

is the three-metric in the local frame of any observer moving within the surface, where nfi 

is a unit vector normal to the hypersurface. X and C, respectively, designate the position 

and the surface area of the thin wall. 

3. The Jump Conditions 

We now expand Eq.(2.1) into two components: v = 0 (time-component) and v = i,j 

(space-component, i, j = 1,2,3). The former (v = 0) yields the equation for energy 

conservation and the later ( v = j) presents the equation for momentum conservation. If 

the system is in a steady state or equilibrium, the time derivatives in the two components 

vanish. The jump conditic&n a general frame are then obtained by integrating across 

the thin wall, i.e., 

v = 0: 

+& ~(cdT’@’ + r(h” + U’U”))] = 0, 
X=X 

(3.1) 

and 
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3x3 &i 9 2 .Y+ ~ wu~u' + pg'> - '7( - dP ‘[ ” 
axj + axi - jjV_ VSij) - (0. VSij 1 X- 

g-&a'uj +T(hij +o'u'i)] 
(3.2) 

f = 0. 
X=X 

where w = e + p is the enthalpy density of the fluid and T is the temperature. 

Let us now look at specific cases, 

i) Domain wall: 7 = -u. For this condition, the above jump conditions become 

and 
&,yj 
- wu’u’ + pg’j - q( - 

dUi azl, 2 axi axj + axi - 3V VGij) - (0 V6ij 1 
x+ 
X- 

a 
+- 

dX’ 1 1 - rah”j = 0. 
X=X 

ii) Dust shell: T G 0. Here, the jump conditions take the form 

8x1 
- wu’uO - x 
i3S ‘1 

“--pi];;+ 
axi 

a 
8Xi 

rc7u’u0 1 X=X 
= 0 

and 

hi azl, 2 

I 

x+ 
+ pgij - ?(- axj + axi - 3V V6ij) - (0 V6ij 

X- 
a 

+- 
axi 1 ‘I rd:uj = 0. x=x 

iii) Spherical boundary: 

For a spherical domain wall (T = -u), the jump conditions can be written 

[ 1 
R+ 

u&l 
R- 

and 

[ww+p]f + &&d) =(& + op. 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 
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Here, we have taken v = ue,., V = deR, xi = (T, 8, +), and Xi = (R, 0, @), where R is 

the radius of the wall and & = $! is the wall velocity. We also have used hi0 = 0 in the 

derivation of above equations. Thus, the motion of a spherical bubble wall is described by 

Eq.(3.8). 

Similarly, for a spherical dust shell (T = 0), the jump condition and the equation of 

motion are given by 

1 1 
R+ 

wy2v 
R- + R2R dt 

~d(&&&) = xg + [?t$ 

and 

[w7%2+p]~~ + --$-+oR21iZ) =(;q+[)F. 

(3.9) 

(3.10) 

4. Application to the QCD Phase ‘Ikansition 

In this section, we consider, specifically, a cosmological quark-hadron (QCD) phase 

transition (Fig.l), which likely occurs - 10~~s after the Big Bang, as an application of the 

previous sections. 

4A - QCD Formalism 

We use subscripts Q and h to denote the quark and hadron phases, respectively and 

we assume a simple “bag model”.[‘O]. Th e b ag equations of state for each phase can then 

be written as 

Quark phase: 

eq = $,T,’ + B, ~9 = $4vT," -B, 

29 
s9 = -pyg& g9 = 51.25. 

Hadron phase: 
l? 2 

eh = #7hTh4, P, = #7&4, 

29 
3, = y$?h$ g,, = 17.25, 

(4.1) 

(4.2) 

where B is a bag constant, s represents entropy, and gpor ,, measures the effective number 

of helicity states in the corresponding phases. In heavy ion collisions, the central collision 
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volume is much smaller than t,he mean free paths of electromagnetically and weakly in- 

teracting particles, so only strongly interacting particles contribute to the pressure. Thus, 

gq = 37 (i x 2 quarks x 2 spin states x 3 colors + i x 2 antiquarks x 2 spin states x 3 colors + 

8gluons x 2 helicities) and gh = 3 (3pions). However, for bubbles in the early universe 

much larger than the mean free path of a neutrino (X, N Ian), we must add the electro- 

weak degrees of freedom (i x 2 charged leptons x 2 spin states + i x 2 anti charged leptons x 

2 + g x 3 neutrinos x 2 helicities) + 1 photon x 2 helicities), so gu = 51.25 and IJ,, = 17.25. 

There are two possibilities for this transition: First, if it is a second order phase tran- 

sition, our jump formalism is obviously not appropriate (of course if there is no phase 

transition at all, the irrelevance of our arguments is also true.), but then the bag assump- 

tions also fail to apply. However, if the QCD transition is a first order phase transition, 

then we have 

e, = eh, P, = Phr (4.5) 

which implies that 

(Q4 = $ - -g 
For the given values of gp and gh (Eqs. (4.1) and (4.2)), it turns into 

(Q4 = 2.97 - 0.52&. 
* 

It is clear from this expression that, we can always find a point to satisfy the above 

equations, including the point T4 = Th = T,. Therefore, we conclude that a consistent 

first order QCD cosmological phase transition is possible if gq is greater than gh as is 

assumed in Eqs.(4.1) and (4.2). 

If this transition is actually first order, we can make the following remarks: 

i) An upper limit for the bag constant B: 
Physically, the transition should occur when the temperature of the quark phase falls 

below the mass of a mesopi (e.g., m,). Furthermore, it is always true mathematically that 

(g)” 1 0. Combining these two requirements, we obtain a natural upper limit for the 

bag constant to fit these assumptions: 

B’14 S(~)1’4mr N 215MeV. 

where we have used the values of gn and tJh given in Eqs.(4.1) and (4.2). This result is 

consistent with the so called MIT bag model(B’/4 = 146MeV),l”l but contrary to the 

parameter values used in the chiral bag model(B’/4 = 276MeV). l’s1 

7 



ii) Unnecessary thermal equilibrium: 

Now we simply express the necessary conditions ( Eq. (4.6alb)) for a first order phase 

transition in Figure 2. We see that the locus of all of the points (2) described by Eq.(4.6) 

defines a curve, any point on which can be the transition point; the thermal equilibrium 

transition Tq = Th = T, is only one of them, We are thus led to the conclusion that, in 

general, for a first order transition, a complete thermal equilibrium between the two phases 

is not necessary; there may exist a small temperature difference between the phases, such 

that the phase boundary moves from the new (hadron) phase toward the old (quark) phase. 

The magnitude of the difference depends on the bag constant. For B'/4 s: 192 MeV(which 

corresponds to hadrons with a radius of 0.7 fm), Th/Ty - 1.03, which is near a thermal 

equilibrium transition, but has a supercooling of - 3%. 

4B - QCD jump conditions 

For a first order QCD phase transition, the hadron bubble is just a domain wall. If it 

is spherical, the jump conditions are given by 

and 

a(Yv) 
t”qY’“q - W,,&h = xg + k&- 

w,y2u; - Why’“; +p, - ph + --5$(M) ‘(& + t, y. (4.9) 

At zero temperature (T = O), Eq.(4.9) reads 

4r~2rg= $R~B, (4.10) 

which is Coleman’s well-known solution.lr31 

Moreover, if the viscosities (shear and bulk) are small and negligible on this energy 

scale during the phase transition, the above jump conditions have the simple form 

and 

t3T 
Wqy2"q - t",,-,%h = X-- 

ar 
(4.11) 

%Y2"; + P, + &$(I'oRz)= t"h+$, fph. 

4C - QCD energy transport 

(4.12) 

There are two principle ways for energy to be transported during this phase transi- 

tion: (1) by hydrodynamic flow, i.e., FH = why2uh;1141 and (2) by neutrino radiation or 
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conduction, i.e., F, = fgy(Tt - T,4) z ag,T~$f,[“] where gu is the neutrino degeneracy 

factor and AT = Tq - Th. We now consider the simple case (no viscosity and no heat 

conductivity) and explore the critical conditions for either mode to be dominant. 

For the purpose of simplification, we introduce the surface term 

1 d 

’ = RR2 dt m 
--( R20 ) 

If g = const, S will assume a simple form 

S= (&(;-2$+~~ 

(4.13) 

(4.14) 

At low velocity, the energy flux carried by hydrodynamic flow can be obtained from Eqs. 

(4.11) and (4.12) 

where Q=w,-wh=4B is the latent heat of the transition. 

Thus, the ratio of the neutrino energy flux to the hydrodynamic energy flux is 

AT/T, 

(+)“‘(I - A$” 
(4.16) 

where we have used the approximation (1 - 2)’ N 1 - 22 and Eqs.(4.1) and (4.2) for 

CJ~ and gh. For a slowly moving boundary, S N 2u/R, the ratio becomes 

Fll 
-= 
FH 

(4.17) 

From this expression, we can clearly see that, if the hadron bubble is very small (i.e., 

R is small), the surface pressure will bevery strong, independentof the magnitude of 

supercooling ( $$ ), and the ratio of the two energy fluxes will always remain very small, 

even approaching zero, i.e., 2 + 0 (note: the energy carried by neutrinos is always 

limited by the amplitude of supercooling). On the other hand, if the bubble is large, the 

surface pressure will become small possibly even negligible; in particular, for large values 

of R, the ratio could become large- much greater than one. 

We can therefore now conclude that, in the early stage of growth of the hadron bubble 

or the phase transition ( R is small), energy transport is dominated by the hydrodynamic 
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flow. As the bubbles get bigger and attain a certain critical size at which the surface 

pressure becomes negligible, the hydrodynamic flow will be limited by neutrino diffusionli41. 

At this stage, the energy flux carried by neutrinos will take over and become dominant. 

The critical condition for neutrino conduction to become compatible with the hydro- 

dynamic flow is obtained by setting the ratio & 2 1, i.e., 

AT 

where we have used CT = 50MeV/fm*, B1i4 = 192MeV, and a/B = 0.283fm. Alterna- 

tively, in view of the physics, neutrino conduction becomes efficient when (and only when) 

the size of the bubble is larger than the neutrino mean free path X, = GF’Z’;” - 1 cm,l’sl 

where G.P is the weak coupling constant. Thus, we can calculate the amount of the super- 

cooling at that time as 

(4.19) 

The maximum initial supercooling can be estimated by setting R equal to the critical 

radius of the nucleating hadron bubble fir = 2~/(Ph - Py), i.e., the minimum radius 

required for a bubble to grow rather than shrink away, 

AT 1 1 T,,I 
@r$ 

1+2!3% 
<< p - 45%, (4.20) 

where ,j’ ,(3.54;f’-‘3)1/2 and R,, N 17.3fm for the parameters we use, and F, << FH. If 

the flux F, is initially compatible with F H, the initial supercooling will be - 24%. This 

result is consistent with the recent result obtained in Ref.[l7]. 

For a first order QCD phase transition, the large supercooling can lead to important 

consequences on big bang nucleosynthesis. The major potential effects are possible large 

nucleation and creation of baryonic density and neutron to proton ratio inhomogeneities 

in cosmic matter[‘sl. It is interesting that these inhomogeneities can significantly mod- 

ify the abundances of light-elements predicted by standard model[“l unless the average 

baryon density is near that required by homogeneous Big Bang Nucleosynthesis1201. As 

noted by Appligate, Hogan and Scherrer [‘I], the result will be that the nucleosynthesis in 

the high-density region occurs with a low f while the low-density region has a high f. 

Regions with ; > 1 have qualitavely different nucleosynthesis than standard homogeneous 

nucleosynthesis (where f - +). Specially, If F > 1, the number of protons rather than 
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neutrons becomes the constraining parameter on the reaction network flow toward 4He. 

Meanwhile, an exciting possibility might arise: i.e.. the baryonic density fluctuation might 

enable big bang nucleosynthesis to make elements heavier than ‘Li which are blocked in 

the conventional model. However, Thomas et al lz21 h. ave shown that such high A leakage 

is not significant for parameter values that fit the A 5 7 abundances. 

The application of this formalism to an ultrarelativistic heavy ion collision should be 

straightforward. In heavy ion collisions. where large chemical potential and dissipative 

processes exist and the surface effects are apparently important, the energy transport 

during the phase transition will be dominated by hydrodynamic flow rather than radiation. 

In the meanwhile, the shape and the velocity of the propagating bubble wall should be 

essentially affected as well. We intend to quantitatively explore this in future work. 

5. Conclusions and Discussion 

In this paper, we have derived covariant jump conditions across a bubble wall, in- 

cluding surface tension and possible dissipation, for a surface moving in any manner but 

without gravity. Special cases, such as those associated with domain walls, dust shells, and 

spherical boundary conditions, are also discussed. However one of the main applications 

is the cosmological QCD phase transition. The possible mechanism of energy transport 

during the phase transition is studied. A critical condition for neutrino conduction to 

dominate over hydrodynamic flow is obtained, with the following result: hydrodynamic 

flow dominates only when the bubble is small. As the bubbles grow and reach a large size, 

neutrino conduction becomes dominant. The critical size of the bubble depends on the 

amount of the initial supercooling. If the initial supercooling is very small, neutrino con- 

duction can become dominant only when the size of the bubble is greater than the mean 

free path of the neutrinos (X, - lcm). However, for large initial supercooling, neutrino 

conduction could become dominant as soon as the bubble attains its critical size, which 

csn even be less than X,. Moreover, the magnitude of the supercooling in the transition 

is estimated. Using this formalism argues for bag constants Bt/4 5 215MeV in order 

to be consistent through such a first order phase transition. Models with values outside 

this range, while still empirically interesting, are not self consistent with the first order 

transition that Bag models implicitly assume. 
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Figure Captions 

Fig.1 Phase diagram of the Quark-Hadron phase transition. 

Fig.2 The temperatures of two phases in the first order phase transition. 
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Fig.2 The temperatures of two phases during the transition. 


